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ABSTRACT

Two Monte Carlo algorithms originally proposed by Zimmerman and Zimmerman and Adams for
particle transport through a binary stochastic mixture are numerically compared using a standard
set of planar geometry benchmark problems. In addition to previously-published comparisons of
the ensemble-averaged probabilities of reflection and transmission, we include comparisons of
detailed ensemble-averaged total and material scalar flux distributions. Because not all benchmark
scalar flux distribution data used to produce plots in previous publications remains available, we
have independently regenerated the benchmark solutions including scalar flux distributions. Both
Monte Carlo transport algorithms robustly produce physically-realistic scalar flux distributions for
the transport problems examined. The first algorithm reproduces the standard
Levermore-Pomraning model results for the probabilities of reflection and transmission. The
second algorithm generally produces significantly more accurate probabilities of reflection and
transmission and also significantly more accurate total and material scalar flux distributions.
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1. INTRODUCTION

Particle transport through binary stochastic mixtures has received considerable research attention
in the last two decades [1, 2]. Much of the research has focused on the development and analysis
of approximate deterministic models for the solution of such particle transport problems. The
most ubiquitous approximate deterministic model is often referred to as the
Levermore-Pomraning or the Standard Model [2]. A comparatively limited amount of research
has been performed into the development of Monte Carlo algorithms for the solution of these
problems. Zimmerman [3] and Zimmerman and Adams [4] proposed a Monte Carlo algorithm
that solves the Levermore-Pomraning equations (Algorithm A) and another Monte Carlo
algorithm that should possess improved accuracy (Algorithm B). Donovan and Danon [5] applied
the Levermore-Pomraning algorithm proposed by Zimmerman (Algorithm A) to the specific case
of a two-dimensional binary stochastic mixture composed of circular disks of one material
randomly distributed in a background matrix material. Donovan and Danon generally refer to
these types of Monte Carlo algorithms as “chord length sampling” (CLS) algorithms. Donovan
and Danon also examined a “limited chord length sampling” (LCLS) algorithm for their problem
in which the particle transport through the disks is modelled explicitly, and the transport through
the background material is treated using CLS (Algorithm A). Donovan and Danon did not
examine for their specific problem the approach of using Algorithm B for both materials in the
problem. We focus in this paper on the algorithms proposed by Zimmerman and Zimmerman and
Adams applied consistently over the one-dimensional spatial domain.
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Zimmerman and Adams [4] numerically demonstrated that the base algorithm (Algorithm A)
solves the Levermore-Pomraning equations and that the improved algorithm (Algorithm B) is
more accurate by comparing the results of these algorithms to a standard set of planar geometry
binary stochastic mixture benchmark transport solutions [6]. The benchmark transport problems
involve an isotropic angular flux incident on one boundary of a binary Markovian statistical
planar geometry medium, and the benchmark quantities tabulated are reflection and transmission
probabilities. Zuchuat et al. [7] reproduced the Markovian statistics benchmark results published
in Ref. [6] and extended these benchmark solutions to additional non-Markovian material
statistics. In addition to the probabilities of reflection and transmission, Zuchuat et al. tabulated
the ensemble-averaged total and material scalar flux distributions. In this paper, we extend for the
first time the comparisons of the Monte Carlo algorithms proposed by Zimmerman [3] and
Zimmerman and Adams [4] to include the scalar flux distributions produced. This comparison is
important, because as demonstrated in Ref. [7], an approximate model that gives accurate
reflection and transmission probabilities can produce unphysical scalar flux distributions. Our
numerical results demonstrate that for the benchmark transport problems considered, Algorithms
A and B robustly produce physically-realistic scalar flux distributions. This result for Algorithm
A is largely expected (although not previously demonstrated), because that algorithm solves the
Levermore-Pomraning equations; the demonstration of this fact for Algorithm B is new. The
scalar flux distributions produced by Algorithm B are generally more accurate than those
produced by Algorithm A.

The remainder of this paper is organized as follows. In Section 2, we describe the benchmark
transport problem that we use to assess the accuracy of the Monte Carlo algorithms. In Section 3,
we outline the Monte Carlo algorithms proposed by Zimmerman and Zimmerman and Adams for
the solution of particle transport through stochastic media. We then present the numerical
comparisons of the algorithms in Section 4. We give general conclusions and suggestions for
future work in Section 5.

2. BENCHMARK TRANSPORT PROBLEMS

We consider the following time-independent monoenergetic neutron transport problem [6] with
isotropic scattering in a one-dimensional planar geometry spatial domain defined on 0 ≤ x ≤ L:

µ
∂

∂x
ψ (x, µ) + σt (x)ψ (x, µ) =

1

2
σs (x)

∫ 1

−1

ψ (x, µ′) dµ′ , 0 ≤ x ≤ L ,−1 ≤ µ ≤ 1 , (1)

ψ (0, µ) = 2 , µ > 0 , (2)

ψ (L, µ) = 0 , µ < 0 . (3)

Eqs. (1)–(3) are written in standard neutronics notation [8]. The boundary conditions given by
Eqs. (2) and (3) are nonstochastic and represent an isotropic incident angular flux with a unity
partial incoming current at x = 0 and a vacuum boundary at x = L. The stochastic spatial
medium is assumed to be composed of alternating slabs of two materials, labelled with the indices
0 and 1, with the mean material slab width for material i denoted as Λi. The total and scattering
cross sections for each material are uniform and are denoted as σi

t and σi
s, i = 0, 1, respectively.

The distribution of material slab widths in the planar medium is assumed to be described by
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spatially homogeneous Markovian statistics [2], in which case a slab width for material i, λi, can
be sampled from an exponential distribution given by

fi (λi) =
1

Λi

exp

(
−λi

Λi

)
, (4)

where again Λi is the mean material slab width for material i. Given the mean material slab
widths, the probability of finding material i at any given point in the spatial domain, pi, is given by

pi =
Λi

Λ0 + Λ1

. (5)

This material probability corresponds to the volume fraction of the material in the problem.

The typical fiducial comparison quantities of interest are the ensemble-averaged probability of
reflection from the slab, 〈R〉, defined as

〈R〉 =

∫ 0

−1

|µ| 〈ψ (0, µ)〉 dµ , (6)

and the ensemble-averaged probability of transmission through the slab, 〈T 〉, defined as

〈T 〉 =

∫ 1

0

µ 〈ψ (L, µ)〉 dµ . (7)

In addition, we are interested in comparing the ensemble-averaged total and material scalar flux
distributions, 〈φ (x)〉 and 〈φi (x)〉, i = 0, 1, respectively, as these distributions determine reaction
rates in the system.

The material parameters for the benchmark transport problems are given in Table I using the
notation of Ref. [7]. The scattering ratio for material i is defined as ci = σi

s/σ
i
t. For each set of

material parameters (cases 1, 2, and 3), three sets of scattering ratio combinations (cases a, b, and
c) and three slab widths (L = 0.1, 1.0, and 10.0) are considered. For all cases, the
ensemble-averaged total cross section, defined as 〈σt〉 = p0σ

0
t + p1σ

1
t , is unity. The different case

numbers (i.e. 1, 2, and 3) represent permutations of materials with mean materal slab widths of
optical depth 0.1, 1.0, and 10.0. The different case letters (i.e. a, b, and c) represent varying
amounts of scattering for each material.

Table I. Material parameters for benchmark transport problems

Case σ0
t Λ0 σ1

t Λ1 Case c0 c1 L

1 10/99 99/100 100/11 11/100 a 0.0 1.0 0.1
2 10/99 99/10 100/11 11/10 b 1.0 0.0 1.0
3 2/101 101/20 200/101 101/20 c 0.9 0.9 10.0

Because not all of the benchmark scalar flux distribution data previously published [7] in
graphical form remains available [9], we have independently regenerated the benchmark solutions
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including scalar flux distributions using the methodologies described in Refs. [6] and [7]. These
benchmark solutions were computed with a discrete ordinates transport code using a standard S16

Gauss-Legendre quadrature set and the linear discontinuous spatial discretization with a mesh
spacing in each material such that σi

t∆x

|µ|min
≤ 1

10
, where |µ|min is the minimum cosine in the

quadrature set [8]. 105 independent statistical material realizations (the same number as in
Refs. [6] and [7]) were sampled from Markovian statistics and simulated for each case. The
ensemble-averaged total and material scalar flux distributions were tallied at the edges of 100
uniformly-spaced spatial zones. (We enforced a minimum of 100 spatial zones for each
independent material realization.) We have verified these benchmark solutions against the
probabilities of reflection and transmission published in Refs. [6] and [7], finding agreement to
typically two to three digits, and against the scalar flux distribution data remaining available [9]
from Ref. [7].

3. MONTE CARLO ALGORITHMS

In this section, we describe in more detail the Monte Carlo Algorithms A and B proposed by
Zimmerman [3] and Zimmerman and Adams [4] for solving the benchmark transport problem
described above. For both Algorithms A and B, a particle history begins with sampling the source
particle characteristics by setting the spatial position x = 0, sampling a direction of flight cosine
µ from a cosine distribution representing the isotropic incident angular flux, and sampling a
material identifier for the particle according to the probabilities defined in Eq. (5). Next, distances
to the required events are either sampled or computed. The distance to collision, dc, is sampled
using the macroscopic total cross section corresponding to the material in which the particle
exists. Because we are interested in comparing the total and material scalar flux distributions, we
impose a uniform spatial mesh on the spatial domain in which to tally this information. As a
result, we introduce a new distance calculation, the distance to zone boundary, db, computed using
the current position and direction of flight of the particle and the boundaries of the spatial zone in
which the particle exists. We compute the Monte Carlo scalar flux tallies using a track length
estimator [8]. The tally volume for the total scalar flux is the zone volume. The tally volume for a
material scalar flux is the zone volume times the volume fraction of the material in the zone,
where the volume fraction of material i is equal to the material probability pi defined in Eq. (5).
For both Monte Carlo algorithms, the distance the particle travels in the zone is tallied whenever a
particle is moved.

In the next sections, we describe in more detail the particle history flow for Algorithms A and B.

3.1. Algorithm A: The Levermore-Pomraning Solution

For each particle history:

1. Compute db and sample dc as described above.

2. Sample the distance to material interface, di, by first sampling a material slab width from the
exponential distribution given by Eq. (4) and then dividing by the particle angle to account
for the direction of particle motion, i.e. di = −λi ln(ξ)/|µ|, where ξ is a random number.
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3. Compute the minimum of db, dc, and di to determine the event.

4. If db is the minimum distance, move the particle to the zone boundary. If the particle is
escaping the spatial domain, update the appropriate reflection or transmission tally,
terminate the history, and track the next particle. Otherwise, return to step 1.

5. If dc is the minimum distance, move the particle the appropriate distance, and sample the
collision type using the macroscopic total and scattering cross sections for the material in
which the particle exists. If the sampled collision is absorption, terminate the history and
track the next particle. If the sampled collision is scattering, perform the scattering collision
by sampling the outgoing characteristics of the scattered particle; the particle maintains its
current material identifier. Return to step 1.

6. If di is the minimum distance, move the particle the appropriate distance and switch the
material identifier. Return to step 1.

Note that following a collision, a new distance to material interface is sampled. As a result, the
particle encounters a different material realization following a collision, which is unphysical. As
noted by Zimmerman and Adams [4], this algorithm is exact in a purely absorbing medium. We
expect Algorithm A to be less accurate in highly scattering materials with optically thick mean
material slab widths. Because we have imposed a spatial mesh on the problem, a new distance to
material interface is also sampled following a zone boundary crossing.

3.2. Algorithm B: A More Accurate Solution

For each particle history:

1. Sample the distance to material interface in the forward direction of particle motion, d+
i , as

described in Algorithm A. Set the the distance to material interface in the backward
direction, d−i , to zero.

2. Compute db and sample dc as described above.

3. Compute the minimum of db, dc, and d+
i to determine the event.

4. If db is the minimum distance, initially treat as in Algorithm A. In addition, adjust the
distance to material interface values in the forward and backward directions to account for
the distance the particle was moved. Return to step 2.

5. If dc is the minimum distance, initially treat as in Algorithm A. In addition, adjust the
distance to material interface values in the forward and backward directions to account for
the distance the particle was moved. If the sampled collision is scattering, also adjust the
distance to material interface values in the forward and backward directions to account for
the change in direction of flight of the particle after the scatter. Switch the forward and
backward distance to material interface values if the particle is backscattered (i.e. the value
of µ changes sign). Return to step 2.

6. If d+
i is the minimum distance, move the particle the appropriate distance, switch the

material identifier, sample a new d+
i , and set d−i to zero. Return to step 2.
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In Algorithm B, a particle can move within one material and encounter the same realization,
which is more physically realistic than Algorithm A. As a result, we expect Algorithm B to be
more accurate than Algorithm A.

4. NUMERICAL COMPARISONS TO BENCHMARK PROBLEMS

In this section, we evaluate the accuracy of the Monte Carlo algorithms described in Section 3
using the set of benchmark problems described in Section 2. In addition to comparisons of the
probabilities of transmission and reflection previously published by Zimmerman and Adams [4],
we compare for the first time the detailed scalar flux distributions produced by these Monte Carlo
algorithms with the benchmark scalar flux distributions. The scalar flux distributions were tallied
in the Monte Carlo simulations using 100 uniform spatial zones. Each Monte Carlo simulation
was performed using 107 particle histories, resulting in pointwise relative standard deviations for
the material scalar flux distributions of typically much less than 1%.

We compare the accuracy of the ensemble-averaged probabilities of reflection and transmission
computed using the Monte Carlo algorithms to the benchmark values using relative errors
computed as

E〈X〉 =
〈X〉MC − 〈X〉benchmark

〈X〉benchmark

, (8)

where 〈X〉 represents either the ensemble-averaged probability of reflection, 〈R〉, or
transmission, 〈T 〉. We compare the accuracy of the scalar flux distributions using a
root-mean-squared (RMS) relative error computed as

E〈φ〉 =

√√√√ 1

N

N−1∑
j=0

(〈
φj

MC

〉
−
〈
φj

benchmark

〉〈
φj

benchmark

〉 )2

, (9)

where 〈φ〉 represents the ensemble-averaged total or material scalar flux distribution, 〈φ (x)〉 or
〈φi (x)〉, i = 0, 1, respectively, and the summation is over the N = 100 spatial tally zones. The
Monte Carlo scalar flux tallies were computed using track length estimators in the spatial zones.
The benchmark scalar flux results were computed using a discrete ordinates code with a linear
discontinuous spatial discretization [8]. We compare the Monte Carlo zonal scalar flux tally with
the discrete ordinates cell-average value computed as the algebraic average of the cell-edge values
(consistent with the linear discontinous discretization).

The computed Monte Carlo results for the reflection and transmission probabilities for cases 1
through 3 are shown in Tables II–IV. The RMS relative error results for the total and material
scalar flux distributions for cases 1 through 3 are shown in Tables V–VII. The total and material
scalar flux distributions computed by the benchmark procedure and the Monte Carlo algorithms
for all cases with L = 10 are plotted in Figs. 1–9.

The Algorithm A reflection and transmission probability results agree in all cases, to typically
two to three digits, with previously-published Levermore-Pomraning model results [6, 7]. (We
have not verified in detail that the scalar flux distributions produced by Algorithm A agree with
the distributions produced by deterministic solutions of the Levermore-Pomraning model,
although we expect that they do). The Algorithm B reflection and transmission probability results
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agree, as far as can be discerned, with the subset of data published as relative errors in graphical
form in Ref. [4].

Two general trends can be observed from our numerical results. First, the accuracy of Algorithms
A and B, as measured by the probabilities of reflection and transmission, generally improves as
the slab width decreases. Second, both Algorithms A and B generally underpredict the reflection
probability and overpredict the transmission probability. These trends are consistent with
observations by previous researchers [4, 6, 7] from similar numerical results.

Focusing on the scalar flux distribution RMS relative error results in Tables V–VII, the accuracy
of both Algorithms A and B generally improves as the slab width decreases. In general, when
Algorithm A is reasonably accurate (i.e. within a couple of percent of the benchmark solution),
Algorithm B is typically somewhat more accurate. When Algorithm A produces very inaccurate
scalar flux distributions (i.e. larger than approximately 25% relative differences compared to the
benchmark solution), Algorithm B is usually significantly more accurate. The overall Algorithm
B RMS relative errors in the scalar flux distributions for the three cases examined are about a
factor of one and one-half to six times smaller than the Algorithm A errors. Examining the total
and material scalar flux distributions in Figs. 1–9, the Algorithm B scalar flux distributions are
clearly in overall better agreement with the benchmark distributions than the Algorithm A
distributions. The statistical fluctuations evident in some of the benchmark flux distributions
derive from a small material probability resulting in a relatively small number of realizations
contributing to the distribution. These statistical fluctuations were also observed in previous
benchmark comparisons [7].

As described in Section 3.1, we expect Algorithm A to be least accurate in scattering materials
with optically thick mean material slab widths. One particular example of this phenomenon is
represented by case 2c for the L = 10 slab. For this case, materials zero and one have mean
material slab widths of one and ten, respectively, and both materials have a scattering ratio of 0.9.
The RMS relative scalar flux error values, given in Table VI, are 0.104 for material zero and 0.630
for material one. The error in the more optically-thick material one is significantly larger than in
the less optically-thick material zero. Algorithm B is significantly more accurate than Algorithm
A for this case, having RMS relative error values of 0.024 and 0.096 for materials zero and one,
respectively.

Finally, we note that both Algorithms A and B produce physically-realistic total and material
scalar flux distributions for the benchmark transport problems considered. This result is largely
expected for Algorithm A, because it has been shown to produce the Levermore-Pomraning
reflection and transmission probability results; the demonstration of this fact for Algorithm B is
new. The ability of an algorithm to accurately compute scalar flux distributions is important, as
these distributions determine the reaction rates in the materials.
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Table II. Reflection and transmission probability comparisons for case 1

Relative Error E〈R〉,〈T 〉

L Case Quantity Benchmark Algorithm A Algorithm B Algorithm A Algorithm B

a 〈R〉 0.04864 0.04768 0.04876 -0.020 0.002
〈T 〉 0.93650 0.93463 0.93350 -0.002 -0.003

0.1 b 〈R〉 0.00868 0.00847 0.00860 -0.024 -0.009
〈T 〉 0.90432 0.90062 0.90080 -0.004 -0.004

c 〈R〉 0.04814 0.04711 0.04807 -0.021 -0.001
〈T 〉 0.93690 0.93461 0.93376 -0.002 -0.003

a 〈R〉 0.25084 0.21898 0.23932 -0.127 -0.046
〈T 〉 0.59614 0.62733 0.60732 0.052 0.019

1.0 b 〈R〉 0.05509 0.04555 0.05267 -0.173 -0.044
〈T 〉 0.48611 0.48439 0.48505 -0.004 -0.002

c 〈R〉 0.25604 0.21693 0.24059 -0.153 -0.060
〈T 〉 0.60222 0.62732 0.61110 0.042 0.015

a 〈R〉 0.43596 0.37823 0.40110 -0.132 -0.080
〈T 〉 0.01465 0.02632 0.02204 0.797 0.504

10.0 b 〈R〉 0.08614 0.05885 0.07763 -0.317 -0.099
〈T 〉 0.00164 0.00155 0.00163 -0.055 -0.006

c 〈R〉 0.47999 0.36962 0.40695 -0.230 -0.152
〈T 〉 0.01606 0.02384 0.02096 0.484 0.305

RMS of E〈R〉 0.164 0.072

RMS of E〈T 〉 0.312 0.197

5. CONCLUSIONS

We have numerically compared two Monte Carlo algorithms originally proposed by Zimmerman
and Zimmerman and Adams for particle transport through a binary stochastic mixture using a
standard set of planar geometry benchmark problems. In addition to previously-published
comparisons of the ensemble-averaged probabilities of reflection and transmission, we compared
the detailed ensemble-averaged total and material scalar flux distributions. Because not all
benchmark scalar flux distribution data used to produce the plots in previous publications remains
available, we have independently regenerated the benchmark solutions including scalar flux
distributions. Algorithm B generally produces significantly more accurate probabilities of
reflection and transmission than Algorithm A and also significantly more accurate total and
material scalar flux distributions. Both Monte Carlo transport algorithms robustly produce
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Table III. Reflection and transmission probability comparisons for case 2

Relative Error E〈R〉,〈T 〉

L Case Quantity Benchmark Algorithm A Algorithm B Algorithm A Algorithm B

a 〈R〉 0.04322 0.04310 0.04323 -0.003 0.000
〈T 〉 0.94194 0.93917 0.93912 -0.003 -0.003

0.1 b 〈R〉 0.00891 0.00876 0.00882 -0.017 -0.010
〈T 〉 0.91725 0.91410 0.91404 -0.003 -0.003

c 〈R〉 0.04270 0.04239 0.04245 -0.007 -0.006
〈T 〉 0.94266 0.93984 0.93977 -0.003 -0.003

a 〈R〉 0.12035 0.10695 0.12045 -0.111 0.001
〈T 〉 0.72753 0.74066 0.72739 0.018 -0.000

1.0 b 〈R〉 0.07468 0.07064 0.07322 -0.054 -0.020
〈T 〉 0.76241 0.75920 0.75950 -0.004 -0.004

c 〈R〉 0.14342 0.12445 0.14182 -0.132 -0.011
〈T 〉 0.77106 0.77409 0.76863 0.004 -0.003

a 〈R〉 0.23537 0.18050 0.22242 -0.233 -0.055
〈T 〉 0.09844 0.12833 0.10605 0.304 0.077

10.0 b 〈R〉 0.29034 0.21851 0.28552 -0.247 -0.017
〈T 〉 0.19582 0.17921 0.19528 -0.085 -0.003

c 〈R〉 0.43560 0.28966 0.40097 -0.335 -0.079
〈T 〉 0.18721 0.19482 0.19560 0.041 0.045

RMS of E〈R〉 0.170 0.034

RMS of E〈T 〉 0.106 0.030

physically-realistic scalar flux distributions for the transport problems examined. The
demonstration of this fact for Algorithm B is new and is important, because an approximate
model that gives accurate reflection and transmission probabilities can produce unphysical scalar
flux distributions.

In future work, we plan to provide comparisons of these Monte Carlo algorithms for additional
problems either of the benchmark variety as in this paper or problems for which analytic solutions
are available.
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Table IV. Reflection and transmission probability comparisons for case 3

Relative Error E〈R〉,〈T 〉

L Case Quantity Benchmark Algorithm A Algorithm B Algorithm A Algorithm B

a 〈R〉 0.07583 0.07488 0.07495 -0.013 -0.012
〈T 〉 0.92522 0.92313 0.92308 -0.002 -0.002

0.1 b 〈R〉 0.00099 0.00099 0.00099 0.000 0.000
〈T 〉 0.85329 0.85192 0.85179 -0.002 -0.002

c 〈R〉 0.06700 0.06618 0.06613 -0.012 -0.013
〈T 〉 0.91670 0.91451 0.91460 -0.002 -0.002

a 〈R〉 0.32166 0.31548 0.32027 -0.019 -0.004
〈T 〉 0.66222 0.66557 0.66080 0.005 -0.002

1.0 b 〈R〉 0.00886 0.00839 0.00873 -0.053 -0.015
〈T 〉 0.48490 0.48293 0.48282 -0.004 -0.004

c 〈R〉 0.24397 0.23747 0.24234 -0.027 -0.007
〈T 〉 0.60683 0.60883 0.60533 0.003 -0.002

a 〈R〉 0.69171 0.60769 0.65412 -0.121 -0.054
〈T 〉 0.16368 0.24029 0.19794 0.468 0.209

10.0 b 〈R〉 0.03698 0.02395 0.03600 -0.352 -0.027
〈T 〉 0.07729 0.07565 0.07656 -0.021 -0.009

c 〈R〉 0.44745 0.32584 0.39879 -0.272 -0.109
〈T 〉 0.10504 0.11960 0.11806 0.139 0.124

RMS of E〈R〉 0.155 0.042

RMS of E〈T 〉 0.163 0.081
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Table V. Scalar flux comparisons for case 1

RMS Relative Error E〈φ〉

L Case Quantity Algorithm A Algorithm B

〈φ〉 0.010 0.010
a 〈φ0〉 0.010 0.011

〈φ1〉 0.007 0.004

〈φ〉 0.004 0.004
0.1 b 〈φ0〉 0.004 0.004

〈φ1〉 0.007 0.010

〈φ〉 0.003 0.004
c 〈φ0〉 0.003 0.004

〈φ1〉 0.007 0.004

〈φ〉 0.032 0.017
a 〈φ0〉 0.038 0.021

〈φ1〉 0.023 0.028

〈φ〉 0.009 0.003
1.0 b 〈φ0〉 0.010 0.002

〈φ1〉 0.016 0.012

〈φ〉 0.030 0.011
c 〈φ0〉 0.035 0.014

〈φ1〉 0.085 0.031

〈φ〉 0.367 0.234
a 〈φ0〉 0.381 0.242

〈φ1〉 0.276 0.187

〈φ〉 0.080 0.013
10.0 b 〈φ0〉 0.082 0.013

〈φ1〉 0.053 0.044

〈φ〉 0.182 0.122
c 〈φ0〉 0.178 0.121

〈φ1〉 0.329 0.202

RMS of E〈φ〉 0.140 0.088

RMS of E〈φ0〉 0.144 0.091

RMS of E〈φ1〉 0.147 0.094
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Table VI. Scalar flux comparisons for case 2

RMS Relative Error E〈φ〉

L Case Quantity Algorithm A Algorithm B

〈φ〉 0.010 0.010
a 〈φ0〉 0.011 0.011

〈φ1〉 0.003 0.003

〈φ〉 0.004 0.004
0.1 b 〈φ0〉 0.004 0.004

〈φ1〉 0.007 0.007

〈φ〉 0.004 0.004
c 〈φ0〉 0.004 0.004

〈φ1〉 0.003 0.004

〈φ〉 0.020 0.016
a 〈φ0〉 0.020 0.018

〈φ1〉 0.030 0.005

〈φ〉 0.004 0.002
1.0 b 〈φ0〉 0.003 0.002

〈φ1〉 0.038 0.027

〈φ〉 0.010 0.004
c 〈φ0〉 0.015 0.003

〈φ1〉 0.255 0.011

〈φ〉 0.140 0.041
a 〈φ0〉 0.160 0.045

〈φ1〉 0.092 0.042

〈φ〉 0.092 0.004
10.0 b 〈φ0〉 0.092 0.003

〈φ1〉 0.182 0.043

〈φ〉 0.091 0.024
c 〈φ0〉 0.104 0.024

〈φ1〉 0.630 0.096

RMS of E〈φ〉 0.064 0.017

RMS of E〈φ0〉 0.071 0.019

RMS of E〈φ1〉 0.237 0.039
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Table VII. Scalar flux comparisons for case 3

RMS Relative Error E〈φ〉

L Case Quantity Algorithm A Algorithm B

〈φ〉 0.002 0.002
a 〈φ0〉 0.003 0.004

〈φ1〉 0.004 0.004

〈φ〉 0.006 0.007
0.1 b 〈φ0〉 0.002 0.002

〈φ1〉 0.014 0.015

〈φ〉 0.002 0.002
c 〈φ0〉 0.002 0.002

〈φ1〉 0.005 0.004

〈φ〉 0.006 0.007
a 〈φ0〉 0.014 0.014

〈φ1〉 0.004 0.002

〈φ〉 0.005 0.005
1.0 b 〈φ0〉 0.004 0.005

〈φ1〉 0.006 0.006

〈φ〉 0.002 0.003
c 〈φ0〉 0.010 0.004

〈φ1〉 0.011 0.002

〈φ〉 0.149 0.059
a 〈φ0〉 0.284 0.143

〈φ1〉 0.061 0.022

〈φ〉 0.028 0.004
10.0 b 〈φ0〉 0.029 0.004

〈φ1〉 0.030 0.019

〈φ〉 0.089 0.067
c 〈φ0〉 0.151 0.077

〈φ1〉 0.410 0.113

RMS of E〈φ〉 0.059 0.030

RMS of E〈φ0〉 0.108 0.054

RMS of E〈φ1〉 0.139 0.039

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

13/23



Patrick S. Brantley

 0.01

 0.1

 1

 10

 0  1  2  3  4  5  6  7  8  9  10

<
φ(

x)
>

x

Case 1a

Algorithm A
Algorithm B
Benchmark

(a) 〈φ (x)〉

 0.01

 0.1

 1

 10

 0  1  2  3  4  5  6  7  8  9  10

<
φ 0

(x
)>

x

Case 1a

Algorithm A
Algorithm B
Benchmark

(b) 〈φ0 (x)〉

 0.01

 0.1

 1

 10

 0  1  2  3  4  5  6  7  8  9  10

<
φ 1

(x
)>

x

Case 1a

Algorithm A
Algorithm B
Benchmark

(c) 〈φ1 (x)〉

Figure 1. Scalar flux distribution comparison for case 1a and L = 10
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Figure 2. Scalar flux distribution comparison for case 1b and L = 10
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Figure 3. Scalar flux distribution comparison for case 1c and L = 10
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Figure 4. Scalar flux distribution comparison for case 2a and L = 10
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Figure 5. Scalar flux distribution comparison for case 2b and L = 10
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Figure 6. Scalar flux distribution comparison for case 2c and L = 10
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Figure 7. Scalar flux distribution comparison for case 3a and L = 10
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Figure 8. Scalar flux distribution comparison for case 3b and L = 10
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Figure 9. Scalar flux distribution comparison for case 3c and L = 10
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